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The authors obtained generalized dependences for the heights of transfer units of ideal and actual
steps that are expressed by the parameters of an actual tray in the vapor and liquid phases. The
particular dependences of the heights of the transfer units equivalent to a theoretical tray that are
expressed by the parameters of an actual tray in the vapor phase are presented for four variants of
interrelation between the ideal and actual trays, two of which are characteristic of the Murphree
model in analyzing the efficiency in the vapor and liquid phases and one of which is characteristic of
the Hausen model. The ratio of the heights of the ideal and actual trays in all the variants is equal
to the efficiency. It is noted that the expressions of the average moving forces, the mass-transfer co-
efficients, and the numbers of transfer units are individual for each variant and form of organization
of phase motion, but in generalized form they are given by the existing dependences.

In calculations of rectification processes, the height of transfer units H, the mass-transfer coefficient
K, and the number of transfer units N are important indices [1, 2]. The first two indices reflect the kinetics
of the process if the moving force is expressed in terms of N and the concentration difference, respectively.

The operational height of the step of contact that corresponds to its actual step can be expressed by
the following parameters of the vapor and liquid phases:

H′ = 
V (yn − yn−1)

KvaS∆yav
 , (1)

H′ = 
L (xn − xn−1)
KliqaS∆xav

 . (2)

In [3], we analyzed the expressions of the moving force for different forms of organization of flows
of interacting phases for four variants of interrelation between the ideal and actual steps of contact. The first
variant is distinguished by equality of the compositions of a vapor, arriving at both steps, and of a liquid that
leaves them. These conditions are typical of the Murphree model [4, 5] in analyzing the efficiency in the
vapor phase. In the second variant, the compositions of the vapor, going out from the ideal and actual steps,
and of the liquid, arriving at them, coincide, which is peculiar to the Murphree model in analyzing the effi-
ciency in the liquid [4, 5]. The third variant is distinguished by equality of the compositions of the vapor and
the liquid that arrive at the ideal and actual steps of contact, which characterizes the Hausen model [5, 6]. In
the fourth variant, the compositions of the vapor and the liquid, leaving the ideal and actual steps, coincide.
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In particular, in direct flow and under the conditions of the relationship of the ideal and actual trays that
correspond to the Murphree model in analyzing the efficiency of mass exchange in the vapor phase, the av-
erage moving forces expressed by the parameters of the vapor and liquid phases are, respectively, equal to

∆yd.f 1 av = 
mxn − yn−1 − mxn−1 + yn

ln 
mxn − yn−1

mxn−1 − yn

 = 




1 + 

mV
L




 (yn − yn−1)

ln 
1 + 

mV
L

 Ed.f 1

1 − Ed.f 1

, (3)

TABLE 1. Magnitudes of the Average Moving Forces Expressed by the Parameters of the Liquid and Vapor
Phases

Mean
moving
forces

Variants of mass exchange

1 2 3 4

Direct flow

∆xd.f av
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
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Similar dependences are also found in other variants of mass transfer for all forms of organization of the
flows (Table 1). The absence of values for the average moving forces in the fourth variant in direct flow and
in the second variant in counterflow in this table and the remaining ones is caused by the fact that in these
models the efficiency is equal to unity.

Substituting Eq. (3) into Eq. (1) and Eq. (4) into Eq. (2), we obtain, respectively

H′ = 

V ln 
1 + 

mV
L

 Ed.f 1

1 − Ed.f 1

KvaS 

1 + 

mV
L





 , (5)

H′ = 

L ln 
1 + 

mV
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 Ed.f 1
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
1 + 

mV
L





 . (6)

Analogous expressions can also be found in all the variants of mass transfer for all forms of the organization
of flows.

As the efficiency approaches unity in the expressions obtained, the denominator of the logarithm
number tends to zero, while the value of the logarithm and correspondingly the height of the ideal step tend
to infinity, since the difference in the concentrations for a highly volatile component after the ideal step ap-
proaches zero and the determination of the mean logarithmic value of the moving force is difficult. Therefore,
formulas (5) and (6) can be used only for determining the height of an actual step but they are unsuitable for
calculating the height of an ideal step.

Figures 1 and 2 present the concentrations of the highly volatile component in the vapor phase and
the liquid and also the corresponding heights of the steps of contact. As is seen from the figures, the height
H is proportional to the difference of (yn − yn−1) and (xn − xn−1), whereas the height H ′′ is proportional to the
difference of (yn

∗  − yn−1
∗ ) and (xn

∗  − xn−1
∗ ). With account for the variants of interrelation between the ideal and

actual steps, the indicated proportionalities are somewhat modified.
In [7, 9], we analyzed the models of efficiency of contact steps in direct flow, counterflow, and cross

motion of the vapor and liquid phases with account for the special features of the interrelation between the
ideal and actual steps. Based on the results of these works, in all the variants and for all forms of organiza-
tion of the flows it is possible to obtain the following expressions:

yn
∗  − yn−1

∗  = 
yn − yn−1

E
 , (7)
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xn
∗  − xn−1

∗  = 
xn − xn−1

E
 , (8)

which are also modified depending on the specific features of the variants.
With Eqs. (7) and (8) taken into account, we represent the height H ′′ for direct flow in the first

variant of interrelation between the ideal and actual steps of contact as

H′′  = 
H′

Ed.f 1
 = 

V ln 
1 + 

mV
L

 Ed.f 1

1 − Ed.f 1

Ed.f 1KvaS 

1 + 

mV
L





 ,
(9)

H′′  = 
H′

Ed.f 1
 = 

L ln 
1 + 

mV
L

 Ed.f 1

1 − Ed.f 1

Ed.f 1KliqaS 

1 + 

mV
L





 . (10)

Fig. 1. Concentrations of the highly volatile component in the vapor
phase in the first and third variants (a), the second and fourth (b) vari-
ants.

Fig. 2. Concentrations of the highly volatile component in the liquid in
the first and fourth variants (a), the second and third (b) variants.
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Similar expressions are derived for other variants and forms of organization of the flows; using them it is
possible to determine the height of a theoretical tray from the parameters of an actual tray. Just as formulas
(5) and (6), these expressions are of little use for values of the efficiency equal to unity.

Since on the step of contact of height H ′′  one obtains concentrations of the highly volatile component
identical to those obtained under ideal conditions, H ′′  is the height of an actual step that is equivalent to a
theoretical tray (HETT), i.e.,

HETT = H′′  . (11)

The height of a theoretical tray must be smaller than the HETT due to the higher intensity of the
processes of mass exchange. It can be expressed by formulas (9) and (10) in which the efficiency is
equal to unity. However, as has been mentioned above, for this efficiency the value of the height is not
specified.

Let us determine the difference of the heights

H′′ − H′ = H′ 
1 − Ed.f 1

Ed.f 1
 = 

V ln 
1 + 

mV
L

 Ed.f 1

1 − Ed.f 1

KvaS 



1 + 

mV

L



 

Ed.f 1

1 − Ed.f 1

 . (12)

Since expression (12) represents an indeterminate form (indeterminancy), for it to be evaluated we
will find a limit following the l’Hospital rule and having taken the derivatives of the numerator and the de-
nominator:

   lim
Ed.f 1→1

  (H′′ − H′) =   lim
Ed.f 1→1

   

V ln 
1 + 

mV
L

 Ed.f 1

1 − Ed.f 1

KvaS 



1 + 

mV

L



 

Ed.f 1

1 − Ed.f 1

 =  lim
Ed.f 1→1

   
V

KvaS 



1 + 

mV

L




 






 ln 

1 + 
mV
L

 Ed.f 1

1 − Ed.f 1








′





Ed.f 1

1 − Ed.f 1





′  =

=  lim
Ed.f 1→1

   
V

KvaS 



1 + 

mV

L




  




1 + 

mV
L




 (1 − Ed.f 1)

1 + 
mV
L

 Ed.f 1

 =  lim
Ed.f 1→1

    
V

KvaS
 

1 − Ed.f 1

1 + 
mV
L

 Ed.f 1

 = 0 .

The proof that the difference of the heights of the ideal and actual trays for Ed.f 1 → 1 is equal to zero
confirms that H ′ is the height of the theoretical step.

In a similar manner, we can obtain analogous dependences in all the variants of mass transfer for all
forms of organization of the flows, which makes it possible to express the height of the ideal step by the
corresponding relations (Table 2) and to represent it in generalized form by the formulas

Hth.t = 
V (yn − yn−1)
EKvaS∆yav

 , (13)
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Hth.t = 
L (xn − xn−1)
EKliqaS∆xav

 . (14)

Thus, in direct flow, the HETT is determined by formulas (9) and (10), while the height of the ideal
step is determined by formulas (5) and (6). These formulas are applicable on substitution into them of the
parameters of the actual step of contact of the vapor phase and the liquid.

The amount of highly volatile component that changes from the liquid to a vapor is expressed [1, 2]
in terms of the parameters of the vapor phase

M = KvaSH∆yav (15)

or the parameters of the liquid

M = KliqaSH∆xav , (16)

By equating formulas (15) and (16) we can obtain the relation

Kv∆yav = Kliq∆xav . (17)

For direct flow on condition that there is a relationship between the ideal and actual trays that corre-
spond to the Murphree model in analyzing the efficiency in the vapor phase, the average moving forces ex-
pressed by the parameters of the vapor and liquid phases are determined by formulas (3) and (4).

Division of the left- and right-hand sides of Eqs. (3) and (4) gives the dependence

TABLE 2. Values of the Heights of an Actual Tray Equivalent to the Heights of a Theoretical Tray

Height
of actual tray

Variants of mass exchange

1 2 3 4

Direct flow

(HETT)d.f
V ln 

1 + 
mV
L

 Ed.f 1

1 − Ed.f 1

Ed.f 1KvaS 

1 + 

mV
L





V ln 
1 + 

L
mV

 Ed.f 2

1 − Ed.f 2

Ed.f 2KvaS 

1 + 

mV
L





V ln 
1

1 − Ed.f 3

Ed.f 3KvaS 

1 + 

mV
L





–

Counterflow

(HETT)g

V ln 
1

1 − Eg1

Eg1KvaS 

1 − 

mV
L





–
V ln 

1 − 
mV
L

 Eg3

1 − Eg3

Eg3KvaS 

1 − 

mV
L





V ln 
1 − 

L
mV

 Eg4

1 − Eg4

Eg4KvaS 

1 − 

mV
L





Cross flow

(HETT)cr
V ln 

2L
mV

 − 1 + Ecr1





2L
mV

 − 1


 (1 − Ecr1)

Ecr1KvaS

V ln 

2L
mV

 Ecr2 + 1 − Ecr2

1 − Ecr2

Ecr2KvaS

V ln 

2L
mV

 + 1 − Ecr3





2L
mV

 + 1


 (1 − Ecr3)

Ecr3KvaS

V ln 
1 − Ecr4 − 

2L
mV

 Ecr4

1 − Ecr4

Ecr4KvaS
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∆yd.f 1 av

∆xd.f 1 av
 = m , (18)

which in generalized form in all the variants of mass transfer for all forms of organization of the flows is
represented as

∆yav

∆xav
 = m . (19)

By substituting Eq. (19) into Eq. (17) we obtain the relation of the mass-transfer coefficients ex-
pressed by means of the concentrations of the highly volatile component in the vapor and liquid phases:

Kliq = mKv . (20)

Relations similar to Eqs. (19) and (20) can be derived in other forms of organization of flows in all
the variants of mass exchange. They correspond to the existing dependences [1, 2], which confirms the valid-
ity of the data in Table 1.

Thus, the ratio of the average moving forces in the vapor phase and the liquid is proportional to the
equilibrium coefficient, whereas the ratio of the mass-transfer coefficients in the vapor and the liquid is in-
versely proportional to this quantity.

Proceeding from the material-balance equation for the highly volatile component, its amount, chang-
ing from the liquid to a vapor, is equal to

M = V (yn − yn−1) = L (xn − xn−1) . (21)

The numbers of transfer units, Nv and Nliq, are a result of simultaneous solution of the equilibrium
equations and the operating line of the process prescribed by the initial and final concentrations [2]. These
numbers expressed by the parameters of the vapor and liquid phases in the first variant in direct flow are
determined by the corresponding dependences

Nd.f 1 = 
yn − yn−1

∆yd.f 1 av
 = 

KvaSH
V

 , (22)

Nd.f 1liq = 
xn − xn−1

∆xd.f 1 av
 = 

KliqaSH

L
 . (23)

Simultaneous solution of Eqs. (3) and (22) and (4) and (23) with account for Eq. (21) leads to the
known formula

Nd.f 1

Nd.f 1 liq
 = 

L
mV

 . (24)

Dependences similar to Eqs. (22)–(24) are also obtained in other variants for all forms of organization
of the phase flows and in generalized form are represented by the following relations:

Nv = 
yn − yn−1

∆yav
 , (25)
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Nliq = 
xn − xn−1

∆xav
 ,

(26)

Nv

Nliq
 = 

L

mV
 . (27)

Certain particular dependences of the numbers of transfer units are given in Table 3.
It should be noted that the values of the average forces expressed in terms of the concentration dif-

ference, the values of the numbers of transfer units, and mass-transfer coefficients hold only within the limits
of individual variants and forms of organization of the flows, i.e., the parameters obtained, for example, for
the first variant of interrelation between the ideal and actual trays in direct flow are adequate only for these
conditions and differ from the corresponding quantities obtained under other conditions. However, their ratios
in conformity with formulas (19), (20), and (27) remain constant for any cases.

NOTATION

a, specific surface of the phase contact per unit volume of the tray, m2/m3; E, efficiency of the tray;
H, tray height, m; K, mass-transfer coefficient, mole/(m2⋅sec⋅mole/m3); L, molar liquid flow, mole/sec; m,
equilibrium coefficient; M, amount of the substance changing from liquid to vapor, mole/sec; N, number of
transfer units; S, tray surface, m2; V, molar flow of the vapor phase, mole/sec; x and y, concentration of the
highly volatile component in the liquid and the vapor, respectively, mole/m3. Subscripts and superscripts: g,
counterflow; cr, cross flow; liq, liquid phase; n, number of the tray considered; n−1, number of the preceding
tray in the direction of vapor motion; d.f, direct flow; av, average value; th.t, theoretical (ideal) tray; v, vapor
phase; 1–4, numbers of the variants considered; ′, theoretical tray; ′′, actual tray that is equivalent to the theo-
retical one; *, ideal conditions.

TABLE 3. Expressions of the Numbers of Transfer Units

Numbers of
transfer units, N

Variants of mass exchange

1 2 3 4

Direct flow

Nd.f v
ln 

1 + 
mV
L

 Ed.f 1

1 − Ed.f 1

1 + 
mV
L

ln 
1 + 

L
mV

 Ed.f 2

1 − Ed.f 2

1 + 
mV
L

ln 
1

1 − Ed.f 3

1 + 
mV
L

–

Counterflow

Ng v

ln 
1

1 − Eg1

1 − 
mV
L

–
ln 

1 − 
mV
L

 Eg3

1 − Eg3

1 − 
mV
L

ln 
1 − 

L
mV

 Eg4

1 − Eg4

1 − 
mV
L

Cross flow

Ncr v ln 

2L
mV

 − 1 + Ecr1





2L
mV

 − 1


 (1 − Ecr1)

ln 

2L
mV

 Ecr2 + 1 − Ecr2

1 − Ecr2

ln 

2L
mV

 + 1 − Ecr3





2L
mV

 + 1


 (1 − Ecr3)

ln 
1 − Ecr4 − 

2L
mV

 Ecr4

1 − Ecr4
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